R.E.D (ElonCrust) Mac OS
MAC OS X installer 15 2.1.4.2.1 Installer can't be opened because it is from an unidentified developer 15 2.1.4.2.2 Some characters are missing in Mac version 16 2.1.4.3. Linux installer 16 2.1.4.3.1 Client is newer than server 16 1. Rename file in Mac OS Terminal using Regex. OSX plist editing causes app crash. Force newlines with cat wildcard printing. R e d u n d ancy.
Instructions
In this assignment, you will implement mass spring, linear FEM and corotational FEM deformable object simulators to deform a 2D object. The 2D object is represented as an obj mesh. Our starter code can load the mesh, and render the mesh. Our starter code also implements a GUI for user interaction. Your task is to fill in the missing functions and code blocks in the starter code.
Starter code and data
You can download the starter code and data here.
Code setup instructions
This assignment requires two external libraries: ImGUI and our old friend OpenGL.- ImGUI: ImGUI is a bloat-free graphical user interface library for C++. It outputs optimized vertex buffers that you can render anytime in your 3D-pipeline enabled application. It is fast, portable, renderer-agnostic and self-contained (no external dependencies). It is designed to enable fast iterations and to empower programmers to create content creation tools and visualization / debug tools (as opposed to UI for the average end-user). It favors simplicity and productivity toward this goal, and lacks certain features normally found in more high-level libraries.
For Mac and Linux users, please enter the 'imgui' folder and run to compile the code.
- OpenGL: In this assignment, OpenGL is used for rendering. For Windows and Linux users, no need to do anything for OpenGL.For Mac users, it is a little bit tricky:If you are using Mac OS X Mojave, make sure you update it to the latest version; otherwise, OpenGL errors can occur.Next, use Homebrew to install freeglut, which is an implementation of GLUT:(Note that although macOS comes with a GLUT framework, it is now deprecated and may not be stable.)Then, open Makefile, replace the correct freeglut version number in the line:Now you should be able to compile the starter code in macOS.
Code structure
How to use the driver
The driver needs a single argument to run. The argument is the filename of the configuration file. For example: <starter code folder>/examples/square/run.config.For Windows users, this argument has been added to the project properties. Launch the driver using the debug button in VS2017 and the correct configuration will be loaded.For macOS and Linux users, execute <starter code folder>/run.sh to launch the driver with the proper configuration file.After launching the driver, the 2D mesh is rendered using OpenGL. Further instructions:
- Edit 'forceMaterialName' in the configuration file to change force models (MS: mass spring, LFEM: linear FEM, CLFEM: corotational linear FEM).
- Edit other variables in the configuration file for simulation setup.
- Hold middle mouse button and drag to zoom in or out.
- Left-mouse click selects a vertex on the mesh and drag to apply external force. The selected vertex will be rendered with green color.
- Interact with the ImGUI control window to modify rendering or simulation settings.
- Edit the file '.bou' to change fixed vertices. Pay attention to the fact that the fixed vertices are 1-indexed, i.e., the first vertex in the mesh is 1, the second is 2, and so on. The fixed vertices will be rendered with red color.
Important: When you compile the starter code, you will see the 2D mesh rendered. However, there will be no deformation even if you enable gravity or drag a vertex on the mesh. After you implement the required code blocks, the mesh should deform under external forces, while the fixed vertices are fixed to its rest positions.
Algorithms
Please remember that all vertices are in 2D in this assignment. For example, a vertex's position is (p_A=(p_A^x, p_A^y)). Its displacement is (u_A=(u_A^x,u_A^y)).
R E D Elon Crust Mac Os Download
Mass Matrix
For a physics-based simulation system, it is important to calculate the mass matrix for the simulated object. For the mass spring system, the object is represented by vertices connected by springs. In FEM, the object is represented by a set of elements which is triangles in our 2D case in this homework, or tetrahedra in 3D case. No matter how we express the objects, calculation of mass follows the formula [m_e = rho * V(e).] Here, (V(e)) is the volume of a 3D element or the surface area of a 2D element and (rho) is the mass density. In order to build the mass matrix (Min R^{2n*2n}) for our system, we need to first calculate mass for each vertex. We iterate each triangle to get the surface area (V(e)) for each triangle. Then we compute (m_e = rho * V(e)) for each triangle. Next we allocate the mass value to three vertices on the triangle, that is to say, each vertex represents a third of the element mass. Suppose the three vertices on the triangle are (A,B,C), then we have [m_A = dfrac{1}{3} m_e ] [m_B = dfrac{1}{3} m_e ] [m_C = dfrac{1}{3} m_e ] Under these assumptions, (M) is a diagonal matrix; this is called 'mass lumping'. Students are required to implement the calculation of the mass for each vertex in baseModel2D.cpp.
Mass-Spring System
Assume A and B are two mass points connected with a spring. Let (vec{L}) be the vector pointing from B to A, (vec{L}=p_A-p_B). Let (R) be the spring rest length. Then the elastic force exerted on A is: [vec{f}_A = -k_{hook}( vec{L} -R)dfrac{vec{L}}{ vec{L} },] where (k_{hook}) is the hook stiffness value. According to Newton's 3rd law: if object A exerts a force (f) on object B, then object B is at the same time exerting force (-f) on A. So the elastic force exerted on particle B is (-vec{f}_A). The elastic energy stored in the spring is therefore [E_{elastic} = dfrac{1}{2}k_{hook}( vec{L} -R)*( vec{L} -R).] Stiffness matrix is also sometimes needed in simulation system. The stiffness matrix is the gradient of the internal force with respect to the displacements. For a spring, the stiffness matrix (K_ein R^{4*4}) is calculated as follows [K_e =dfrac{partial [begin{matrix}vec{f}_Avec{f}_Bend{matrix}]}{partial [begin{matrix}u_Au_Bend{matrix}]} = [begin{matrix}dfrac{partial vec{f}_A}{partial u_A} & dfrac{partial vec{f}_A}{partial u_B}dfrac{partial vec{f}_B}{partial u_A} & dfrac{partial vec{f}_B}{partial u_B} end{matrix}] = [begin{matrix}K_{AA} & -K_{AA}-K_{AA} & K_{AA}end{matrix}],] where (K_{AA}in R^{2*2}) is the gradient of the internal force on particle A with respect to (u_A). In order to calculate (K_{AA}), we can use the following formula [K_{AA} = dfrac{partial vec{f}_A}{partial u_A} = k_{hook}(I^{2*2}-R[begin{matrix} dfrac{1}{L} - dfrac{1}{L^3}(p_A^x-p_B^x)*(p_A^x-p_B^x) & -dfrac{1}{L^3}(p_A^x-p_B^x)*(p_A^y-p_B^y) -dfrac{1}{L^3}(p_A^x-p_B^x)*(p_A^y-p_B^y) & dfrac{1}{L} - dfrac{1}{L^3}(p_A^y-p_B^y)*(p_A^y-p_B^y) end{matrix}])] Students are required to implement calculation of elastic energy, internal forces and stiffness matrix for each element (spring) in massSpring2D.cpp.
Linear FEM
For more detalis about linear FEM and corotational linear FEM, please refer to the following paper:Matthias Müller and Markus Gross. Interactive Virtual Materials. In Proc. of Graphics Interface 2004, pages 239–246, 2004.In linear FEM, we assume a linear relationship between the internal force and displacements, which is, [vec{f} = K * vec{u},] where (Kin R^{2n*2n}) is the stiffness matrix of the system and (vec{u}in R^{2n*1}) is the displacements. And the elastic energy is therefore, [E_{elastic} = dfrac{1}{2}vec{u}^T * K * vec{u}.] In linearFEM2D.cpp, we provided the precomputed stiffness matrix for each element (triangle). Students are required to fill in the stiffness matrix and implement calculation of the elastic energy and internal force for each element. For more details on how to calculate the stiffness matrix, please refer to [Muller 04].
Corotational linear FEM
The shortcoming of the linear FEM is that is not rotation-invariant. This leads to obvious artifacts under large deformations. Corotational linear FEM addresses this by extracting the rotational component of the deformation gradient. It then computes the internal forces. The rotations are extracted separately for each element (triangle). Suppose the three triangle vertices are (A,B,C). Let (p_{A,B,C}) represent the deformed vertex positions, whereas (q_{A,B,C}) represents the undeformed vertex positions. We define the deformation mapping function (phi) that maps the undeformed positions of the element to its deformed positions. We also define the deformation gradient matrix (Fin R^{2*2}) as the Jacobian matrix of (phi). Each vertex satisfies the following mapping formulas, [vec{p}_A = phi(vec{q}_A) = F_e vec{q}_A + t_e,] [vec{p}_B = phi(vec{q}_B) = F_e vec{q}_B + t_e,] [vec{p}_C = phi(vec{q}_C) = F_e vec{q}_C + t_e.] Here, (F_e) contains the rotational and stretching parts of the element deformation and (t_e) contains the translation part. To eliminate (t_e) in the formula, we subtract the last equation from the other two. We then group the two resulted equations into a single matrix equation as follows, [[begin{matrix} vec{p}_A^x - vec{p}_C^x & vec{p}_B^x - vec{p}_C^x vec{p}_A^y - vec{p}_C^y & vec{p}_B^y - vec{p}_C^y end{matrix}] = F_e * [begin{matrix} vec{q}_A^x - vec{q}_C^x & vec{q}_B^x - vec{q}_C^x vec{q}_A^y - vec{q}_C^y & vec{q}_B^y - vec{q}_C^y end{matrix}] Rightarrow D_e^s = F_e * D_e^m .] It is easy to calculate (D_e^s) and (D_e^m) for each element. Therefore, we calculate the deformation gradient as (F_e = D_e^s * (D_e^m)^{-1}). The rotational part (R_e) of the deformation gradient can be extracted by a Polar Decomposition of (F_e) as, [F_e = R_e * S_e.] Finally, we compute the internal forces as follows, [vec{f}_e = R_EK_e(R_E^{-1}vec{p}_e - vec{q}_e).] Note that (vec{f}_e in R^{6*1}, K_e in R^{6*6}). Matrix (R_E in R^{6*6}) contains three copies of the (2*2) rotation matrix (R_e) along its diagonal. Vector (vec{p}_e in R^{6*1}) contains the deformed positions, whereas vector (vec{q}_ein R^{6*1}) contains the undeformed positions. The inverse rotation is (R_e^{-1} = R_e^T) since (R_e * R_e^T = I). The warped stiffness matrix is [K_e' = R_EK_eR_E^{-1}.] The elastic energy of the element is [E_{elastic} = dfrac{1}{2} (R_E^{-1}vec{p}_e - vec{q}_e)^T K_e (R_E^{-1}vec{p}_e - vec{q}_e).] In corotationalLineaFEM2D.cpp, the precomputed unwarped stiffness matrix (K_e) is already provided. We also provide the function to do polar decomposition. Students are required to implement the internal froce, elastic energy and warped stiffness matrix calculation.
Implementation and Demos
In the starter code, you will see several places marked with 'Students should implement this.' (or similar). These are the places where you need to provide your implementation.The assignment ships with four demos: square, fruit, weedle and stickman. You can switch between them by modifying run.sh.
R E D Elon Crust Mac Os Catalina
How to submit the assignment
Upload your entire solution as one zip file to the Blackboard. Your solution should include the following:
R.e.d (elon Crust) Mac Os 11
- Your code which implements the mass spring system, linear FEM and corotational linear FEM.
- The compiled executable (Windows or Mac; please include all the required DLLs).
- Three animation videos that best represent your work, showing the mass spring, linear FEM and corotational linear FEM, respectively. You can choose any of the four demo meshes for the video, or a new demo created by you. Each video should not exceed 600 frames (~20 seconds).
- A README file. Please describe what you have done. Also describe your obsevations on the three force models. How different are they? What are the reasons causing their differences? Also, please describe any extra credit implemented.
Please submit the assignment using the USC Blackboard. In order to do so, create a single zip file containing your entire submission. Submit this file to the blackboard using the 'Attach File' field. After submission, please verify that your zip file has been successfully uploaded. You may submit as many times as you like. If you submit the assignment multiple times, we will grade your LAST submission only. Your submission time is the time of your LAST submission; if this time is after the deadline, late policy will apply to it.
Note: Blackboard has a limited upload bandwidth. To avoid uploading issues, please delete unnecessary files before submission. For example, Visual Studio will generate large redundant files. Remove them. Remove all object files (.obj, .o, or similar). Remove all intermediate compiling files (e.g. those in Debug/Release). Be careful to not accidentally erase your actual code files.Instructors and graders will read your code. Quality of your code and comments might affect your grade. This is an individual assignment. Your code might be compared to code of other students using (automatic) code comparison tools.
Example screenshots
Extra credit ideas
- Build your own interesting 2D meshes.
- Analyze the running time of the three force models.
- Implement an external force field, such as wind.
- Implement collision detection and collision response such as object hitting the ground and bouncing back, etc.
- Implement non-homogeneous material properties such as non-homogeneous mass or stiffness. For example, the stick man has larger density in its head than other parts. Or, the weedle's horn and tail are hard whereas its body is soft.
- Change fixed constraints to movable constraints. Because of the inertia, the free parts will deform under movement of the constraints. This effect is called 'constrained dynamics'. For example, for the fruit mesh, one can load a motion file that describes the motion of the constrained vertices (the red vertices at the bottom). After updating the constrained vertices' positions at each frame, one can do the integration of the free parts of the mesh. Note that the implementation is challenging and requires a full understanding of the code.
- Any creative extra credit contributions are encouraged.
R.E.D (ElonCrust) Mac OS